Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. j. microbiol ; 46(4): 1065-1076, Oct.-Dec. 2015. tab, graf
Article in English | LILACS | ID: lil-769637

ABSTRACT

Abstract Thermophilic 32 isolates and 20 reference bacilli were subjected to Rep-PCR and ITS-PCR fingerprinting for determination of their genotypic diversity, before screening lipase activities. By these methods, all the isolates and references could easily be differentiated up to subspecies level from each other. In screening assay, 11 isolates and 7 references were found to be lipase producing. Their extracellular lipase activities were measured quantitatively by incubating in both tributyrin and olive oil broths at 60 °C and pH 7.0. During the 24, 48 and 72-h period of incubation, the changes in the lipase activities, culture absorbance, wet weight of biomass and pH were all measured. The activity was determined by using pNPB in 50 mM phosphate buffer at pH 7.0 at 60 °C. The lipase production of the isolates in olive oil broths varied between 0.008 and 0.052, whereas these values were found to be 0.002-0.019 (U/mL) in the case of tyributyrin. For comparison, an index was established by dividing the lipase activities to cell biomass (U/mg). The maximum thermostable lipase production was achieved by the isolates F84a, F84b, and G. thermodenitrificans DSM 465T (0.009, 0.008 and 0.008 U/mg) within olive oil broth, whereas G. stearothermophilus A113 displayed the highest lipase activity than its type strain in tyributyrin. Therefore, as some of these isolates displayed higher activities in comparison to references, new lipase producing bacilli were determined by presenting their genotypic diversity with DNA fingerprinting techniques.


Subject(s)
Bacillus/chemistry , Bacillus/classification , Bacillus/enzymology , Bacillus/genetics , Bacillus/growth & development , Bacillus/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/classification , Bacterial Proteins/enzymology , Bacterial Proteins/genetics , Bacterial Proteins/growth & development , Bacterial Proteins/metabolism , Enzyme Stability/chemistry , Enzyme Stability/classification , Enzyme Stability/enzymology , Enzyme Stability/genetics , Enzyme Stability/growth & development , Enzyme Stability/metabolism , Genetic Variation/chemistry , Genetic Variation/classification , Genetic Variation/enzymology , Genetic Variation/genetics , Genetic Variation/growth & development , Genetic Variation/metabolism , Genotype/chemistry , Genotype/classification , Genotype/enzymology , Genotype/genetics , Genotype/growth & development , Genotype/metabolism , Hot Temperature/chemistry , Hot Temperature/classification , Hot Temperature/enzymology , Hot Temperature/genetics , Hot Temperature/growth & development , Hot Temperature/metabolism , Hydrogen-Ion Concentration/chemistry , Hydrogen-Ion Concentration/classification , Hydrogen-Ion Concentration/enzymology , Hydrogen-Ion Concentration/genetics , Hydrogen-Ion Concentration/growth & development , Hydrogen-Ion Concentration/metabolism , Lipase/chemistry , Lipase/classification , Lipase/enzymology , Lipase/genetics , Lipase/growth & development , Lipase/metabolism , Phylogeny/chemistry , Phylogeny/classification , Phylogeny/enzymology , Phylogeny/genetics , Phylogeny/growth & development , Phylogeny/metabolism
2.
Indian J Hum Genet ; 2012 Jan; 18(1): 56-61
Article in English | IMSEAR | ID: sea-139443

ABSTRACT

BACKGROUND: Idiopathic pulmonary arterial hypertension (IPAH) is a poorly understood complex disorder, which results in progressive remodeling of the pulmonary artery that ultimately leads to right ventricular failure. A two-hit hypothesis has been implicated in pathogenesis of IPAH, according to which the vascular abnormalities characteristic of PAH are triggered by the accumulation of genetic and/or environmental insults in an already existing genetic background. The multifactor dimensionality reduction (MDR) analysis is a statistical method used to identify gene–gene interaction or epistasis and gene–environment interactions that are associated with a particular disease. The MDR method collapses high-dimensional genetic data into a single dimension, thus permitting interactions to be detected in relatively small sample sizes. AIM: To identify and characterize polymorphisms/genes that increases the susceptibility to IPAH using MDR analysis. MATERIALS AND METHODS: A total of 77 IPAH patients and 100 controls were genotyped for eight polymorphisms of five genes (5HTT, EDN1, NOS3, ALK-1, and PPAR-γ2). MDR method was adopted to determine gene–gene interactions that increase the risk of IPAH. RESULTS: With MDR method, the single-locus model of 5HTT (L/S) polymorphism and the combination of 5HTT(L/S), EDN1(K198N), and NOS3(G894T) polymorphisms in the three-locus model were attributed to be the best models for predicting susceptibility to IPAH, with a P value of 0.05. CONCLUSION: MDR method can be useful in understanding the role of epistatic and gene–environmental interactions in pathogenesis of IPAH.


Subject(s)
Adult , Epistasis, Genetic/genetics , Female , Genetic Variation , Genotype/classification , Humans , Hypertension, Pulmonary/genetics , India/epidemiology , Male , Multifactor Dimensionality Reduction/methods , Multifactor Dimensionality Reduction/statistics & numerical data , Polymorphism, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL